Das Buch trug ursprünglich den Titel "Phänomenologie des Geistes" von seinem Autor: G.W.F. Hegel.
1807 veröffentlichte Werk markiert eine bedeutende Entwicklung des deutschen Idealismus nach Kant.Price at Amazon used to be $ 17.83.
Philosophy and the sciences were closely linked in the age of Leibniz, Galileo, and Kant.
This addresses the transformations of metaphysics as a discipline, the emergence of analytical mechanics, the diverging avenues of 18th-century Galileuianism, the body-mind problem, and philosophical principles of classification in the life sciences.
Price at Amazon used to be 128,39 €
| Painter | Country | Birth Year | Death Year | Most Famous Work |
|---|---|---|---|---|
| Albrecht Dürer | Germany | 1471 | 1528 | Melencolia I |
| Leonardo da Vinci | Italy | 1452 | 1519 | Mona Lisa |
| Michelangelo | Italy | 1475 | 1564 | Sistine Chapel Ceiling |
| Raphael | Italy | 1483 | 1520 | The School of Athens |
| Titian | Italy | ~1488 | 1576 | Assumption of the Virgin |
| Language | Creator(s) | Year | Main Paradigm(s) |
|---|---|---|---|
| C | Dennis Ritchie | 1972 | Structured, Procedural |
| C++ | Bjarne Stroustrup | 1983 | Object-oriented, multi-paradigm |
| Erlang | Joe Armstrong | 1986 | Funcional, Concorrente |
| Haskell | Comitê Haskell | 1990 | Purely Functional |
| Java | James Gosling | 1995 | Object-Oriented |
| Pascal | Niklaus Wirth | 1970 | Structured, Procedural |
| Python | Guido van Rossum | 1991 | Multi-paradigm (OO, Procedural, Functional) |
Below, in modern vector notation, in differential form, are Maxwell's four equations governing the electromagnetic field.
Below, in modern vector notation, in integral form, are Maxwell's four equations governing the electromagnetic field.
"""
O programa traça, em 2D, os perfis instantâneos do
campo elétrico E (y) e do campo magnético B (z),
ambos perpendiculares ao eixo de propagação x.
"""
import numpy as np
import matplotlib.pyplot as plt
# Constantes e parâmetros
c = 3e8
E0 = 1.0
lambda_ = 1.0
k = 2 * np.pi / lambda_
omega = 2 * np.pi * c / lambda_
x = np.linspace(0, 2 * lambda_, 1000)
t = 0
E = E0 * np.sin(k * x - omega * t)
B = (E0 / c) * np.sin(k * x - omega * t)
B_scaled = c * B # para visualização
plt.plot(x, E, label='E(x, t=0)')
plt.plot(x, B_scaled, label='c·B(x, t=0)')
plt.xlabel('x (m)')
plt.ylabel('Amplitude (u.a.)')
plt.title('Propagação de onda eletromagnética no vácuo (instantâneo)')
plt.legend()
plt.grid(True)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # registra o proj. 3-D
# --------------------- parâmetros físicos ----------------------
c = 3.0e8 # velocidade da luz (m s⁻¹)
E0 = 1.0 # amplitude arbitrária do campo elétrico (V m⁻¹)
lam = 1.0 # comprimeira de onda (m)
k = 2*np.pi/lam # número de onda
ω = 2*np.pi*c/lam # frequência angular
# domínios espacial e temporal
x = np.linspace(0, 2*lam, 1000) # duas ondas completas
t = 0.0 # instante “congelado”
# --------------------- campos E e B ----------------------------
E = E0 * np.sin(k*x - ω*t) # componente em y
B = (E0/c) * np.sin(k*x - ω*t) # componente em z (antes do escalonamento)
B_plot = c * B # escala-se por c para comparar a E
# --------------------- figura 3-D ------------------------------
fig = plt.figure(figsize=(8, 4))
ax = fig.add_subplot(111, projection='3d')
# linha do campo elétrico: (x, E, 0)
ax.plot(x, E, np.zeros_like(x), label='E(x, t=0)')
# linha do campo magnético escalonado: (x, 0, c B)
ax.plot(x, np.zeros_like(x), B_plot, label='c·B(x, t=0)')
# rótulos e estética
ax.set_xlabel('x (m)')
ax.set_ylabel('E (V/m)')
ax.set_zlabel('c·B (V/m)')
ax.set_title('Propagação de uma onda eletromagnética no vácuo (instantâneo 3-D)')
ax.legend()
plt.tight_layout()
plt.show()
"There is an increasing demand of current information systems to incorporate the use of a higher degree of formalism in the development process. Formal Methods consist of a set of tools and techniques based on mathematical model and formal logic that are used to specify and verify requirements and designs for hardware and software systems."
"There is an increasing demand of current information systems to incorporate the use of a higher degree of formalism in the development process. Formal Methods consist of a set of tools and techniques based on mathematical model and formal logic that are used to specify and verify requirements and designs for hardware and software systems."
| CSS Section | Description/Purpose | Markdown Class (example) |
|---|---|---|
| section.title | Title slide | <!-- _class: title --> |
| section.title-bg | Title slide with background | <!-- _class: title-bg --> |
| section.chapter | Chapter slide | <!-- _class: chapter --> |
| section.chapter-alt | Alternative chapter | <!-- _class: chapter-alt --> |
| section.agenda | Agenda/content slide | <!-- _class: agenda --> |
| section.end | Thank you slide | <!-- _class: end --> |
| section.end-bg | Thank you with background | <!-- _class: end-bg --> |
| section.copyright | Copyright slide | <!-- _class: copyright --> |
| section.logos | Slide with additional logos | <!-- _class: logos --> |
| CSS Section | Description/Purpose | Markdown Class (example) |
|---|---|---|
| section.blank | Blank slide | <!-- _class: blank --> |
| section.nobrand | Slide without branding | <!-- _class: nobrand --> |
| section.multicolumn | Slide with multiple columns | <!-- _class: multicolumn --> |
| section.multicolumn vcenter | Vertically centered IN multiple columns | <!-- _class: multicolumn vcenter --> |
| section.grid-tlr | Grid: top, left, right | <!-- _class: grid-tlr --> |
| section.grid-lrb | Grid: left, right, bottom | <!-- _class: grid-lrb --> |
| section.quote | Quote slide (unified quote) | <!-- _class: quote --> |
| section.quote.dark | Alternative quote (formerly quote2) | <!-- _class: quote dark --> |
| section.references | References/bibliography slide | <!-- _class: references --> |
